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Abstract

At a given instant we see only visible surfaces, not an object’s complete 3D appearance. Thus, objects may be represented as
discrete ‘views’ showing only those features visible from a limited range of viewpoints. We address how to define a view using
Koenderink’s (Koenderink & Van Doorn, Biol. Cybernet. 32 (1979) 211.) geometric method for enumerating complete sets of
stable views as aspect graphs. Using objects with known aspect graphs, five experiments examined whether the perception of
orientation is sensitive to the qualitative features that define aspect graphs. Highest sensitivity to viewpoint changes was observed
at locations where the theory predicts qualitative transitions, although some transitions did not affect performance. Hypotheses
about why humans ignore some transitions offer insights into mechanisms for object representation. © 2001 Elsevier Science Ltd.

All rights reserved.
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1. Introduction

If T hold my head to the left and look down at the
handle grips and front wheel and map carrier and gas
tank I get one pattern of sense data. If I move my
head to the right I get another slightly different
pattern of sense data. The two views are different.
The angles of the planes and curves of the metal are
different. The sunlight strikes them differently. If
there’s no logical basis for substance then there’s no
logical basis for concluding that what’s produced
these two views is the same motorcycle.

(Pirsig, 1974).

2. Human object representation

A common assumption is that visual object recogni-
tion is accomplished by comparing what we see to
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visual/spatial mental representations of objects. Inher-
ent in this model of recognition are three issues: first,
what is the format of such representations; second, how
are such representations acquired; and, third, what are
the mechanisms and processes used to match input
images to such representations. For the most part, it
has been the first issue, the format of object representa-
tions, that is central to theories of visual cognition. In
addition to subserving recognition, such representations
are held to be common to mental simulations of physi-
cal phenomena, visual problem solving, and spatial
reasoning (Shepard & Cooper, 1982). Thus, elucidating
the specific properties of the representations underlying
object recognition may increase our understanding of
many facets of visual cognition.

While it is possible to draw many distinctions be-
tween different representational formats for objects,
one of the most commonly held is between viewpoint-
dependent and viewpoint-independent representations.
Consistent with this distinction are two approaches to
object representation: multiple-views and structural-
descriptions. The former is based on viewpoint-specific
features and images (Poggio & Edelman, 1990; Biil-
thoff & Edelman, 1992; Tarr, 1995), while the latter
is based on configurations of three-dimensional
(3D) parts (Marr, 1982; Biederman, 1987; Hummel &
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Biederman, 1992). Certain elements from both ap-
proaches are likely to play some role in human object
recognition in that both viewpoint-dependent and
viewpoint-independent patterns of recognition perfor-
mance have been obtained (Jolicoeur, 1985; Biilthoff
& Edelman, 1992; Biederman & Gerhardstein, 1993;
Tarr, 1995). Notwithstanding these more global dif-
ferences, there are certain commonalties between the
two approaches. Both approaches propose that self-
occlusions within an object lead to multiple represen-
tations. As features become visible or occluded with
changes in viewpoint, each ‘new’ configuration is in-
stantiated as a distinct representation; referred to as a
‘view’ or ‘aspect’ in some models and simply an ‘al-
ternate’ representation in others. The essential ques-
tion underlying this phenomenon and the central issue
addressed by this article is: What properties of the
object define a view? At the most general level, one
answer agreed upon by both approaches is that new
representations across changes in viewpoint are
defined qualitatively, that is, by a change in particular
features, usually geometric, derived from the image
(Biederman & Gerhardstein, 1995 and Tarr &
Biilthoff, 1995 debate). It is important to note that
qualitative change is a relative concept meaningful
only for a given class of features, a change that may
be considered qualitative for one class may not be
qualitative for another. Thus, one difference between
the multiple-views and structural-description ap-
proaches is what constitutes an appropriate feature
set for organizing the representation (Biederman and
Gerhardstein (1995), Tarr & Biilthoff debate different
potential feature sets). What we introduce here is one
computational model of how shape features may vary
qualitatively across changes in viewpoint. We then use
psychophysical methods to test whether human ob-
servers are sensitive to the qualitative transitions spe-
cified by this particular approach.

2.1. Empirical studies of object representation

To provide a better understanding of why the selec-
tion of a particular qualitative feature set is impor-
tant for theories of recognition, we first present a
brief review of some of the most relevant experimen-
tal results. A fundamental question is how recognition
may be achieved across variation in the two-dimen-
sional (2D) image arising from changes in 3D view-
point. Although both multiple-views and structural-
description theories propose that gross occlusions are
compensated for by the encoding of more than one
view, they differ in their predictions for how perceiv-
ers generalize from familiar viewpoints of objects to
unfamiliar viewpoints within views. Consistent with

the dichotomy drawn between theories, multiple-views
theories suggest that views are specific to familiar
viewpoints and that recognition performance, in terms
of both response time and accuracy, will decrease
with increasing distance between familiar and unfa-
miliar viewpoints (Tarr & Pinker, 1989; Tarr, 1995).
In contrast, many structural-description theories argue
that a particular configuration of features will be in-
variant over changes in viewpoint and that recogni-
tion performance will remain constant with increasing
distance between familiar and unfamiliar viewpoints
(Biederman & Gerhardstein, 1993, 1995). Thus, these
two approaches make different predictions regarding
the stability of the features that define a given view
and regarding how the features encoded within a
given view are matched to input shapes.

Several studies provide evidence that, at least in
some cases, human observers use multiple viewpoint-
specific representations for object recognition. For ex-
ample, both Tarr and Pinker (Tarr & Pinker, 1989;
Tarr, 1995) and Biilthoff and Edelman (Biilthoff &
Edelman, 1992; Edelman & Biilthoff, 1992) familiar-
ized participants with novel objects in a small set of
viewpoints and then tested generalization to new, un-
familiar viewpoints. They found that the recognition
of objects at new viewpoints was progressively worse
as a function of the distance from the nearest familiar
viewpoint. Supporting the idea that objects are
learned as multiple view-based representations is an
extensive body of work sharing the common empirical
finding of viewpoint dependence in recognition (Rock,
1973; Bartram, 1974; Rock, 1974; Bartram, 1976;
Palmer, Rosch, & Chase, 1981; Jolicoeur, 1985; Rock
& Di Vita, 1987; Bulthoff & Edelman, 1992; Edelman
& Biilthoff, 1992; Humphrey & Khan, 1992; Hayward
& Tarr, 1997). For example, Bartram found that the
time to name familiar objects decreased with practice
more rapidly when the same viewpoint was repeatedly
presented as compared to when new viewpoints were
presented. In a subsequent study, Bartram found that
the time to judge whether sequentially presented line
drawings of objects were the same was faster for
same-viewpoint images as compared to different-view-
point images of the same object (see also Lawson,
Humphreys, & Watson, 1994). For photographs, Bar-
tram found a similar pattern for less familiar objects,
but near viewpoint invariance for very familiar ob-
jects. This latter result may be interpreted in terms of
multiple views. Familiar objects are more likely to
have been seen in many viewpoints as compared to
less familiar objects (Tarr & Pinker, 1989). Thus,
comparisons across viewpoint between unfamiliar ob-
jects will require additional processing since the dis-
played viewpoints are more likely to be novel.
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Recent findings from a range of disciplines also
provide evidence for view-based representations. From
a neuroscientific perspective, Perrett, Rolls, and Caan
(1982), Perrett et al. (1989), Perrett et al. (1991) and
Perrett, Oram, and Ashbridge (1998) have found cells
in the monkey cortex that are sensitive to specific
viewpoints of familiar objects such as faces. Likewise,
Logothetis and colleagues (Logothetis & Pauls, 1995;
Logothetis, Pauls, & Poggio, 1995) trained monkeys to
recognize novel objects from specific viewpoints. In
addition to replicating the pattern of viewpoint-depen-
dent recognition behavior found in humans with similar
objects (Blulthoff & Edelman, 1992; Edelman &
Biilthoff, 1992), they found evidence for arrays of view-
tuned neurons in monkey cortex that corresponded to
the trained viewpoints.

Plaut and Farah (1990) cite both neurophysiological
(Perrett et al., 1985) and neuropsychological (Ratcliff &
Newcombe, 1982) evidence in support qualitatively-
defined view-based representations. They note that
while cell responses are invariant with respect to image
plane transformations, cells are sensitive to depth plane
transformations — a pattern consistent with the hypoth-
esis that view-based representations are structured ac-
cording to qualitative changes in viewpoint. This
proposal is also supported by studies of agnosics, i.e.,
recognition-impaired brain lesion patients, that some-
times exhibit selective impairment in recognizing differ-
ent views of objects (Warrington & Taylor, 1973;
Layman & Greene, 1988) — in particular, exhibiting
difficulties with unconventional or less familiar views.
From a computational perspective, Seibert and Wax-
man (1990) and Seibert and Waxman (1992) have de-
veloped a neural network system that uses multiple 2D
views to represent and recognize 3D objects. This
model utilizes a learning architecture that is based on
biologically motivated models of neural interaction.
Several other researchers have also attempted to imple-
ment multiple-views recognition models within neurally
plausible networks (Poggio & Edelman, 1990; Wein-
shall, Edelman, & Biilthoff, 1990; Edelman & Wein-
shall, 1991; Hummel & Stankiewicz, 1996b) or other,
more traditional, computational frameworks (Freeman
& Chakravarty, 1980; Ullman, 1989; Ullman & Basri,
1991).

While the above studies examined the effect of view-
point in general, Biederman and Gerhardstein (1993)
and Hayward and Tarr (1997) have investigated a more
specific question — how changes in the visible image
structure of objects influence viewpoint dependency. In
both studies participants decided whether two sequen-
tially-presented objects were the same regardless of any
rotation in depth. For multi-part objects, Biederman
and Gerhardstein found that when the same set of parts
remained visible across two viewpoints, generalization
was much better as compared to when the set of visible

parts changed between viewpoints. Biederman and Ger-
hardstein interpreted this result as evidence that objects
are represented as structural-descriptions composed of
viewpoint-invariant parts: when particular parts be-
come visible or occluded a new structural-description
must be activated. Hayward and Tarr, however, were
able to obtain almost exactly the same pattern of results
using single-volume objects. Their interpretation was
that it is configurations of qualitative features, not parts
that define different views of objects. Under either
interpretation, both results suggest that different object
representations are generated depending on the image
structure that arises at a given viewpoint, a result
consistent with current versions of both the multiple-
views and structural-description approaches. Thus, de-
spite differences in the specific features used to
represent objects ranging from simple local image
patches (Riesenhuber & Poggio, 1999) to qualitatively
defined 3D parts (Biederman, 1987) almost all models
of object recognition assume multiple view-based repre-
sentations. What remains an open question is the prin-
ciple by which views are organized. It is this problem
we turn to next.

2.2. What is a view?

Despite the large number of studies that have exam-
ined viewpoint-dependent recognition and view-based
representations, there has been little effort to elucidate
precisely what constitutes a ‘view.” Indeed, given the
fact that humans are active observers that must acquire
object representations over time,! one of the most im-
portant aspects of any view-based approach is the
mechanism by which an observer determines whether
two occurrences of an object are similar. This process
necessarily includes several different pieces of informa-
tion: the pose of the object; whether the object is
familiar; and, whether the object has been observed at
that viewpoint.? Moreover, using such information, the
visual system must establish both the identity of the
object and whether the current view should be retained
as a new view (either as a distinct view or as a ‘basis
image’ in the computation of a model of object shape)
of an existing object representation, as an entirely new

"In contrast, typical computer-based recognition systems rely on
three-dimensional object models that are specified a priori by the
designer.

2 Mechanisms for computing such information prior to recognition
commonly employ a subset of the input image, for instance, a small
number of orientation-free local features (Ullman, 1989). More gener-
ally, all recognition schemes must include indexing procedures in
order to identify the most likely match between input and all known
object models (Clemens & Jacobs, 1991). Such procedures may, as
part of their estimate of fit, supply information about pose or
familiarity.
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object representation, or not at all. Indeed, studies of

how observers instantiate views within object represen-

tations indicate that three factors play a role.

1. Familiarity with an object in a given viewpoint
prompts the instantiation of a view (Tarr & Pinker,
1989; Biilthoff & Edelman, 1992; Tarr, 1995).

2. Familiarity with some exemplars from a class of
visually-similar objects in a given viewpoint prompts
the instantiation of a class-general view (Jolicoeur &
Milliken, 1989; Lando & Edelman, 1995; Moses,
Ullman, & Edelman, 1996; Tarr & Gauthier, 1998).
Observers are able to use information about the
particular objects seen at specific viewpoints to
make inferences about the appearance of new mem-
bers of the class seen only at a canonical viewpoint.
These ‘virtual views’ (Poggio & Vetter, 1992;
Beymer & Poggio, 1996) may arise through visual
similarities between objects within a class (Gauthier
& Tarr, 1997b), as well as symmetries within a
specific object.

3. It has been found that the way in which the geome-
try of a given object changes with viewpoint may
prompt the instantiation of new views (Vetter, Pog-
gio, & Biilthoff, 1994; Tarr & Gauthier, 1998), in
particular, with greater changes in image structure
leading to an increased likelihood of a new aspect or
‘characteristic’ view® (Freeman & Chakravarty,
1980). For example, Edelman and Biilthoff (1992)
found better recognition performance for some
viewpoints of objects despite the fact that all of the
novel test objects were seen equally often from each
test viewpoint (a result consistent with the ‘canoni-
cal views’ phenomenon first reported by Palmer et
al. (1981)). Moreover, these preferred views per-
sisted even with extensive practice and the addition
of depth cues (which might have facilitated 3D
viewpoint-invariant representations).

It is this final factor, the way in which image struc-
ture changes with viewpoint, that is of the greatest
relevance in defining what constitutes a view. Familiar-
ity and class similarity are experiential, i.e., how often
an object or a class of objects is observed in a particular
viewpoint, and therefore, defy a formal analysis. In
contrast, the surface geometry of objects varies in a
manner that may be captured by differential geometry
and topology. Furthermore, because the surface geome-
try of objects is highly complex, intuition or other ad
hoc methods will not generally provide good tools for
understanding when an object shifts from one aspect to
another (hence the different interpretations of the Bie-

3 In the computer vision literature, the terms ‘aspect’ and ‘charac-
teristic view’ are used somewhat interchangeably. However, in the
biological vision community the latter term has a somewhat broader
meaning (e.g., preferred or ‘canonical’ views; Palmer et al., 1981). For
the sake of clarity we have used ‘aspect’ throughout.

derman and Gerhardstein (1993), and Hayward and
Tarr (1997), results). Consequently, it is here that com-
putational techniques may be applied most effectively.

To address the problem of how to define a view,
Koenderink and Van Doorn (1979) have suggested a
geometric approach for enumerating all topologically
distinct views for a given object. This conception of
aspects is consistent with our intuitions about the per-
ception of natural objects: as the viewpoint of an object
changes, we assign qualitatively different labels, for
instance, distinguishing between the ‘front’ and the
‘profile.” It is the formal analysis of this intuition that
will be presented next.

3. Qualitative changes in object perception

As an observer moves his or her viewpoint with
respect to an object, its appearance will change. From
some viewpoints, a small change in viewpoint only
leads to a minor variation in appearance whereas at
other viewpoints, more significant changes may occur.
For example, when driving along a twisty mountain
road and rounding a curve, the scene may suddenly
change when a new vista comes into view. Those view-
points where the appearance of the object does not
qualitatively vary for any infinitesimal motion of the
observer are said to be stable. In contrast, drastic,
qualitative changes in appearance (named visual events)
only occur at certain accidental viewpoints. All of the
neighboring, stable viewpoints can be grouped together
into regions, and the accidental viewpoints form the
borders that delineate the stable regions. A qualitative
description of the object’s appearance (as mentioned,
referred to as an aspect) from a viewpoint within each
region and the adjacency relationships between regions
can be used to define a view-based representation
known as an aspect graph.

Aspect graphs and their variants have received much
attention in the computer vision community and may
provide the basis for a representational format for
biological object recognition. Building on newly devel-
oped mathematical methods (Koenderink & Van
Doorn, 1976), Koenderink and Van Doorn (1979) in-
troduced the mathematical basis for aspect graphs.
Concurrently, Freeman and Chakravarty (1980) imple-
mented a recognition system based on mulitple views
which incorporated many of the essential ideas of as-
pect graphs. Though the foundations are almost 20-yr-
old, only in the past few years have computational
algorithms been proposed and implemented for actually
constructing the aspect graph from an object model.
Bowyer and Dyer (1991) present a survey (see also, Van
Effelterre (1994), for an introduction to aspect graphs)
and here, we summarize some of the most relevant
results from the literature. Most of the related work in
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computer vision is concerned with constructing aspect
graphs from 3D object representations, perhaps pro-
duced from a computer aided design (CAD) system.
Far less work has addressed how an ambulant observer,
such as a human perceiver, might construct an aspect
graph by circumnavigating or manipulating an object.
Whether starting with a 3D model or actively observing
the object, the ultimate aspect graph is dictated by the
object geometry; however, the acquisition details will
differ drastically. Here, we are only concerned with
understanding the relationship between object geometry
and the resulting aspect graph representation.

3.1. Assumptions

Before one can arrive at an aspect graph representa-
tion, three issues must be considered. First, what is the
3D shape of the object? Is it polyhedral, laminar,
completely smooth, piecewise smooth, randomly tex-
tured; or, is it rigid, floppy, pliable, compressible or
articulated? Nearly all work has considered rigid ob-
jects, progressing from 2D objects (Warman, Baugher,
& Gualtieri, 1986) to convex polyhedra (Stewman &
Bowyer, 1987; Watts, 1987), to general polyhedra
(Gigus & Malik, 1990; Plantinga & Dyer, 1990), to
simple, curved objects (Kriegman & Ponce, 1990; Chen
& Freeman, 1991; Eggert & Bowyer, 1993), to more
general curved objects (Petitjean, Ponce, & Kriegman,
1992; Rieger, 1992).

The second, and perhaps most important question
for the purposes of this article, is what constitutes a
qualitative description of an object’s appearance (a
view) and how might it change with respect to view-
point? Following Koenderink and Van Doorn, views
are defined in the line drawing resulting from image
intensity discontinuities, which themselves arise from
either surface normal discontinuities (edges or creases)
or occlusion boundaries (Nalwa, 1988). Although they
are not relevant to the approach presented here, there
are also non-geometric image intensity discontinuities
which arise from light source or albedo discontinuities.
Finally, this geometric approach is not the only possible
definition of an aspect graph. Views might also be
defined in terms of a qualitative representation of image
irradiance, a description of the visible surfaces (as
produced by a laser range finder or photometric stereo
for instance; Hebert and Kanade, 1985; Ikeuchi and
Kanade, 1988), the number and types of features found
by some detection process, or the response of a small
number of filters (Riesenhuber & Dayan, 1997).

The third question that must be considered is how
should image formation be modeled and consequently
how should the relationship between the observer and
object be parameterized? The relationship between any
two rigid bodies (e.g. an observer and object), has six
degrees of freedom, but some of these do not affect the

qualitative structure of the image. Let us first consider
the more general case of perspective projection. The
image is formed by the intersection with the imaging
surface (a plane for a video camera or a curved retina)
of visual rays passing through the center of projection.
The location of the center of projection determines the
qualitative structure of the line drawing while changes
in the location and orientation of the imaging surface
merely lead to smooth image deformations (a projective
transformation in the case of an image plane). The
three coordinates of the center of projection sufficiently
parameterize the observer—object relationship. When
the observer is distant, effects of foreshortening are
diminished, and orthographic projection adequately
models the projection function. The direction from the
observer to the object (the viewing direction) determines
the line drawing, and a viewing direction is readily
represented as a point on a sphere (the view sphere).
Moreover, the qualitative representation is independent
of image plane rotation, translation and scaling. For
other qualitative representations of a view (e.g., a repre-
sentation based on image irradiance), additional
parameters may be required to model image formation
(e.g. the relationship between the object and the light
source or sources).

It should also be noted that nearly all aspect graph
models do not account for the acuity of the eye or
camera, and instead are assumed to perfectly resolve all
detail. A consequence is that the number of distinct
views can become very large, even though it is unlikely
that the differences could ever be resolved. It has
generally been presumed that if resolution is directly
considered, the resulting aspect graphs would more
accurately account for the actual sensor performance
and the number of distinct views would become man-
ageable. While Ikeuchi and Kanade (1989) incorpo-
rated a sensor model when constructing aspect graphs
using a tesselation of the view sphere, they did not
consider line drawings. Shimshoni and Ponce (1997)
introduced a method for constructing finite resolution
aspect graphs of polyhedra. Surprisingly, the number of
views increased; the reason is that with a finite resolu-
tion sensor with discrete pixels, there are more ways for
contours to meet and change their configuration. An
alternative approach is to introduce the notion of a
scale-space in which the image is blurred to varying
degrees prior to extracting the qualitative features used
to define a view; an aspect graph structure could then
be constructed over the combination of viewpoint and
scale (Eggert, Bowyer, Dyer, Christensen, & Goldgof,
1993). Unfortunately, the study of this process is in its
infancy, and current approaches make compromises.
E.g., in their method for solids of revolution (Pae &
Ponce, 1999), blur the object to different degrees (the
scale) and then assume that an idealized line drawing is
obtained of the blurred object. However, given the
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highly limited knowledge in the field of computational
vision regarding scale-space aspect graphs, we will not
consider this issue further in this paper.

3.2. Aspect graphs and object geometry

As mentioned, we follow Koenderink and Van
Doorn and represent an object’s image by its line
drawing. By way of example, two types of objects will
be considered: convex polyhedra and smooth objects.
Both perspective and orthographic projection will be
discussed.

3.3. Polyhedral objects

A polyhedron is bounded by planar faces, two of
which meet at straight edges; three or more faces meet
at a vertex. A stable line drawing of a polyhedron is
composed of straight line segments that are the image
of the edges. The end-points of image segments are
either the projection of vertices or t-junctions (where a
face occludes an edge). Thus, the qualitative line draw-
ing can be thought of as a graph (sometimes called an
image structure graph, Malik (1987)) whose labeled
nodes are the segment end-points and whose arcs are
the straight line segments. Though the visual events,
where this graph structure changes, come in two flavors
(Gigus & Malik, 1990; Plantinga & Dyer, 1990), for the
sake of conciseness, we will only consider the one
associated with convex polyhedra. The infinite plane
defined by a face divides the space of perspective pro-
jection viewpoints in two. From one side of the plane,
the entire face including its edges is visible. From the
other side, the face itself is occluded, and the visibility
of its edges will depend upon the relative location of the
viewpoint and the other faces. Thus, as an observer
crosses this plane, the visibility of the face changes, and
the structure of the line drawing changes, i.e., a visual
event. Each face of a convex polyhedron defines a
plane, and taken together the set of planes partitions
the view space into a number of distinct cells. For every
viewpoint within a cell, the line drawings will be quali-
tatively similar. Note that the qualitative structure is
independent of the 3D orientation of the retina.

Fig. 1 depicts an example for a 2D convex polygonal
object and a one-dimensional (1D) image; the 2D per-
spective projection viewpoint space is divided by lines
(dashed) defined by the polygon’s edges. The views
associated with each region can be used to define the
nodes of the aspect graph, and the borders between
regions define the arcs. Note that some cells have finite
area while others extend outward and have infinite
area. Orthographic projection can be considered the
limiting case of perspective as the viewer becomes infi-
nitely far from the object. The intersection of the visual
event planes for perspective projection with a circle (a

sphere in three-dimensions) of infinite (or very large)
radius partitions the circle into a set of compact re-
gions. These regions define the stable views under or-
thographic projection. In Fig. 1 there are 15 stable
views under perspective projection while there are only
10 stable views under orthographic projection.

For 3D polyhedra, each face defines a plane which
divides the 3D viewpoint space into two regions. For
convex polyhedra, this is the only type of visual event
surface-t-junctions cannot occur in the image of a single
convex polyhedron. For more general polyhedra, an
additional visual event occurs at those viewpoints
where the visibility of t-junctions changes. This set of
accidental viewpoints lies on a curved surface in the
viewpoint space.*

3.3.1. Smooth objects

Let us now consider the line drawing of an object
bounded by a smooth surface and its aspect graph. The
image contour of a smooth surface arises from the set
of surface points (the contour generator) where the
line-of-sight grazes the surface. The line-of-sight is ei-

Fig. 1. Perspective projection aspect graphs in two dimensions: The
numbered edges of the convex polygon define visual event lines
(dashed) which partition the view space into 15 regions. The numbers
in each region indicate which of the polygon’s edges are visible from
all viewpoints within that region. The ‘large’ circle represents the
space of orthographic projection viewpoints, and it is partitioned into
10 arcs by the visual event lines.

4 For a polyhedron with n faces observed under perspective projec-
tion, it has been shown that there are O(n?) different views when the
polyhedron is convex and O(n°) different aspects when the polyhe-
dron has concavities (Gigus & Malik, 1990; Plantinga & Dyer, 1990).
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Fig. 2. The aspect graph of a torus. (a) The view sphere is partitioned into six regions corresponding to stable views, or aspects. (b) These regions
are separated by five singular views, or visual events, which are instances of the singularities illustrated here (in this and subsequent figures, visual
events are designated by numbers and aspects are designated by letters). Reprinted from Kriegman and Ponce (1990).

ther the viewing direction under orthographic projec-
tion or a ray emanating from the center of projection
under perspective. In contrast with polyhedra whose
contour generators (edges) are fixed on the surface, the
contour generators of smooth objects depend on the
viewpoint and are not rigidly affixed to the surface.
From a stable viewpoint, the contour generators (some-
times referred to as the occluding contour, the rim, the
apparent contour, or the limb) of a smooth compact
surface will be a set of smooth closed curves. The image
of the contour generator is also a curve, but it may
contain singular points (i.e. sharp corners). Consider

for example, the drawing of a torus in the upper right
of Fig. 2(a) (this example will be discussed in more
detail in ‘Implementation and Examples’); the drawing
is composed of two closed contours: the one corre-
sponding to the outside of the surface is smooth while
the contour corresponding to the hole has singular
points. As first shown by Whitney (1955) and discussed
in Koenderink and Van Doorn (1976), Koenderink
(1984), Nalwa (1988), there are two types of singular
points: cusps and t-junctions. Cusps (contour termina-
tors) arise when the viewing direction is aligned with
the tangent to the contour generator; in the image, the
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contour terminates at a point. At a t-junction, two
distinct points on the contour generator project to the
same image point. If the object were not opaque, the
image contours would cross; however, because of occlu-
sion, one branch of the cross is hidden, hence the
appearance of a “T’. Thus, the line drawing of a smooth
object is composed of smooth curve branches that join
at t-junctions and terminate at cusps. Reconsider the
line drawing of the torus shown in the upper right of
Fig. 2(a); the right and left sides of the hole are
occluded, and so the image contour contains two t-
junctions and two cusps. Other examples of cusps and
t-junctions will be shown below.

The development of the theory of line drawings of
smooth objects and their visual events is derived from
differential geometry, as well as singularity and
catastrophe theory Whitney (1955), Thom (1972), Ker-
gosien (1981), Arnol’d (1984), Rieger (1990). Much of
this work assumes that surfaces are transparent; opacity
simply prevents certain feature points, sections of the
occluding contour, or visual events from being seen.
Opacity does not introduce any new features or visual
events. It should also be noted that up to occlusion, any
point on the surface may be a contour generator.
Consider a surface point and a line which just grazes
the surface at that point. While continuing to pass
through the point, the line can be rotated so that it
continues to graze the surface. The rotating line will
sweep out a plane called the tangent plane. From any
viewpoint in the tangent plane, this surface point will
project to a point on the image contour.

Thus, we have established the condition for a surface
point to project to an image contour; now, what are the
conditions for that point to be a singularity (a t-junc-
tion or cusp)? To form a t-junction, two points on the
surface must project to the same image point. If the line
connecting any two surface points lies in the tangent
plane of each point, then these two points will project
to a t-junction whenever both points lie along a line of
site. To understand the conditions for a surface points
to project to a cusp, we must consider the differential
(local) geometry of the surface. As shown in Fig. 3, a
smooth surface can be decomposed into two types of
regions, elliptic or hyperbolic regions which are sepa-
rated by a parabolic curve.®> While any point on the

5 At a surface point p, the surface normal is orthogonal to the tangent
plane. Consider a plane through p that also contains the surface normal;
the intersection of this plane and the surface defines a curve, and the
curvature of the curve at p can be determined. Now consider rotating
the plane about the surface normal. The normal curvature will vary,
and the minimum and maximum values of the curvature are known
as the principal curvatures. When the principal curvatures have the same
sign, the point is said to be elliptic. When the signs differ, the point
is hyperbolic. Since the sign of the normal curvature changes at a
hyperbolic point, the curvature must be zero for two directions of the
plane; these directions are called the asymptotic directions. At a
parabolic point, one of the principal curvatures is zero.

surface can lie on the occluding contour, cusps are the
image of hyperbolic points (locally similar to a moun-
tain pass or a smooth pleat in a piece of cloth). Any
hyperbolic point can project to a cusp, but the view-
point must fall on one of two special lines within the
tangent plane called the asymptotic directions.

As demonstrated in the above discussion and illus-
trated in Fig. 2, the line drawing of a smooth surface is
composed of smooth curve branches that join at t-junc-
tions and terminate at cusps. How does this structure
change for a change of viewpoint? As shown in Ker-
gosien (1981), Arnol’d (1984), Platonova (1984) and
Rieger (1990), there is a small catalogue of six types of
visual events; three of these are termed local events and
only involve a single surface point. Similar to a t-junc-
tion, the other three multi-local events involve more
than one surface point. Figs. 4 and 5 graphically illus-
trate these events. For each event, the top drawing
shows a surface and the location of three viewpoints.
From each of these viewpoints, the rendered surface is
shown below, and the relevant section of the occluding
contour is highlighted. The dashed curves denote the
occluded sections of contour generator while the solid
curves indicate visible sections of the occluding con-
tour. The visual events across these contours are seen in
the second viewpoint (the image labeled ‘b’). One may
visualize the three images as snapshots from an anima-
tion obtained by a camera that is moving along a
trajectory from viewpoint a to b to c.

Fig. 4 illustrates the local events. In a swallowtail
transition (Fig. 4(1)), a smooth contour forms a singu-
larity which then breaks apart into two cusps and a
t-junction. As shown by example in the two line draw-

elliptic region

parabolic curve

hyperbolic region

flecnodal curve

Fig. 3. Points on a smooth surface can be partitioned into elliptic and
hyperbolic regions which are separated by parabolic curves. Flec-
nodal curves lie in the hyperbolic region and may contact the
parabolic curve.
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Fig. 4. The change to the image contour during local visual events:
(1) swallowtail, (2) beak-to-beak, and (3) lip. The top image shows a
view of the surface and the location of three viewpoints while the
bottom images depict the surface from those viewpoints. The dashed
curves denote occluded portions of the contour generator while the
solid curves indicate visible sections of the occluding contour.

ings of a torus in the top of Fig. 2(a), one of the cusps
and the two associated branches are occluded when the
object is opaque. In a beak-to-beak transition (Fig.
4(2)), two cusps approach each other, and the curve
branches incident to the two cusps join to form two
smooth contours. Finally, in the /ip transition shown in
Fig. 4(3), a closed contour with two cusps appears out
of nowhere as the viewpoint approaches the tangent
plane of some point on the surface. Only points lying
on certain surface curves can participate in a visual
event; for each point on the curve, the viewing direction
must also be an asymptotic direction.® A point on the
curve and the asymptotic direction define a line in three
space; when taken over the whole curve, these lines

¢ Points on parabolic curves, which are generically smooth closed
curves and separate elliptic from hyperbolic regions as seen in Fig. 3,
project to lip and beak-to-beak transitions. Swallowtail transitions
occur at the image of points lying on flecnodal curves. As shown in
Fig. 3, these curves lie in the hyperbolic region of the surface. They
may meet the parabolic curve and be self intersecting. See Koen-
derink (1990), Petitjean et al. (1992) for a characterization of the
differential geometry of flecnodal curves.

sweep out a ruled surface in the viewpoint space. Like
the separating planes formed by the faces of a convex
polyhedron described in the previous section and shown
in Fig. 1, this ruled surface determines the set of
accidental viewpoints under perspective.

There are also three multi-local events. These are
illustrated in Fig. 5. A tangent crossing (Fig. 5(1))
occurs when two distinct surface points project to the
same image point as in a t-junction. However, in a
tangent crossing, the contour tangents at these two
points are aligned instead of intersecting transversally.
Imagine for example hiking up a mountain believing
that you are heading for the summit when suddenly the
true summit emerges from behind the false one; a
tangent crossing has just occurred. The transition be-
tween the two line drawings in the upper right of Fig.
2(a) is another example. For two points to participate
in a tangent crossing, the points must share a common
tangent plane. Consequently, a line connecting the two
points will lie in this common tangent plane. Pairs of
points satisfying this condition form a pair of curves on
the surface. The line between corresponding points can
be swept along the curves to define the ruled visual
event surface. A cusp crossing event (Fig. 5(2)) occurs
when a point on the occluding contour projects to a

Fig. 5. The change to the image contour during multi-local visual
events: (1) tangent crossing, (2) cusp crossing, and (3) triple point.
The triple point involves three surface points while the tangent
crossing and cusp crossing only involve two.
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Fig. 6. Examples of stimulus images used in the psychophysical experiments. Each object is displayed at the 45° increments. (a) Line drawings of
the torus, (b) shaded images of the torus, and (c) line drawings of the bell. (d) Shaded images of the bell. Note that these are the actual line
drawings used in the experiments. Because of the rendering method the visible contours are bitmapped as opposed to vector-based, hence their

somewhat jagged appearance.

cusp and another point on the occluding contour
projects to the same image point. A triple point occurs
when three distinct points on the contour generator
project to the same image point; as seen in Fig. 5(3), the
arrangement of t-junctions changes across the visual
event. As in the tangent crossing, the pair or triplet of
surface points participating in these latter two events
define a line; taken over the whole object, the locus of
such points generates a ruled surface that partitions the
viewpoint space.

Between the local and multi-local events, a set of
ruled visual event surfaces are associated with the ob-
ject. These ruled surfaces partition the viewpoint space
into regions, and within each region the line drawing
will be qualitatively stable since all possible changes
only occur on these surfaces. That is, for any viewer
motion within the region, no new singular points (cusps
or t-junctions) will form or disappear, and their inter-
connectivity will remain unchanged. Thus, all qualita-
tively distinct line drawings can be enumerated with
one per region. As in the case of convex polyhedra, the
intersection of an infinitely large sphere with these
visual event surfaces partitions the sphere into regions.
Each region corresponds to a stable view in the ortho-
graphic projection aspect graph. In addition, the arca
of a region is proportional to the probability that a
particular view will be seen for a random, uniformly
distributed orthographic projection viewpoint.

3.4. Implementation and examples

The above description of the relationship of object
geometry to the visual events forms the basis for an
implemented algorithm for constructing the aspect
graph of objects modeled by algebraic surfaces. Specific
details of the algorithm, a set of equations characteriz-
ing the visual events, and examples under orthographic
projection can be found in Petitjean et al. (1992). See
Rieger (1992) for an alternative algorithm. It should
also be mentioned that for piecewise smooth objects,
the catalogue of stable singularities (Malik, 1987) and
visual events (Rieger, 1987; Sripradisvarakul & Jain,
1989) includes the ones for smooth surfaces as well as
some additional types of events.

Two objects, which are surfaces of revolution, were
used in the psychophysical experiments described in the
following section and illustrated in Fig. 6. For both
objects their orthographic projection aspect graphs
have been computed (Kriegman & Ponce, 1990) as
shown in Figs. 2 and 7. Because of the axis of symmetry
of a surface of revolution, the partitioning of the view
space will also be circularly symmetric about the axis
(i.e. rotating the viewpoint about the axis leads to the
same line drawing). Under orthographic projection, the
view sphere is partitioned along lines of latitude which
can be described by a single number. This both sim-
plifies aspect graph construction (Kriegman & Ponce,
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1990; Eggert & Bowyer, 1993) and simplifies the inter-
pretation of psychophysical experiments; when probing
participants, we are drawing sample images from a 1D
space rather than a higher dimensional one and do not
have to impose an ad hoc metric for the ‘distance’
between images.

The torus shown in Fig. 2 is about the simplest
smooth object that has a non-trivial aspect graph. Even
so, there are six distinct views, separated by five visual
events. Because of the object’s bilateral symmetry, the
aspect graph also exhibits bilateral symmetry about the
equator. As the viewpoint moves from the north pole
(looking along the axis of revolution), the line drawing
is composed of two concentric smooth curves. At some
viewpoint, a double swallowtail transition occurs, and
two cusps and two t-junctions come into view. As the
viewing direction approaches the equator, a tangent
crossing occurs, and the entire hole is no longer visible.
The rearward contour generator of the hole has become
completely occluded. When crossing the equator, the
leading edge of the hole on the lower side of the torus
becomes visible, and the series of stable views repeats in
reverse. Fig. 2(b) illustrates the line drawings from each
of the accidental viewpoints for a transparent torus.

Fig. 7 illustrates the aspect graph of a bell-like object
generated by sweeping a cubic curve around an axis
(Kriegman & Ponce, 1990). This object is piecewise
smooth, and so the catalogue of visual events is more
extensive than described above (Rieger, 1987; Sripradis-
varakul & Jain, 1989). The object does not have a
symmetry plane orthogonal to the axis, and this is
reflected in the aspect graph. One may note that some
of the visual events are subtle and somewhat difficult to
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Fig. 7. The partitioning of the view sphere and stable views of a bell
under orthographic projection. Adapted from Kriegman and Ponce
(1990).

discern. For example, the qualitative changes between
views ¢ and d: the image of the lower edge and the
occluding contour form a t-junction in view ¢, and they
share a common tangent in view d (a curvature-1 junc-
tion). The perceptual salience of such changes will be
discussed in the context of the experimental results.

4. View-based representations in human perception

To this point, we have reviewed evidence suggesting a
role for view-based representations in human object
recognition and argued that theories of view-based
representation require a more precise definition of what
defines a view. In particular, while it seems clear that
familiarity will play some part in determining which
viewpoints of an object are retained as mental represen-
tations, there are both empirical and computational
reasons to suppose that object geometry is also a factor.
To this end, we have offered a framework in which
geometry is used to partition the complete set of view-
points of an object into qualitative views. This provides
an avenue for understanding what constitutes a qualita-
tive view in human perception. Furthermore, the defini-
tion of a view in an aspect graph representation arises
from the same physical properties of objects with which
our visual systems must contend. Thus, the essential
viewpoint-dependent features underlying the aspect
graph representation are likely to be fundamental to
any view-based representation, including those gener-
ally unrelated to the aspect graph approach.

Despite this potential, these claims should be tem-
pered with several caveats concerning the assumptions
underlying aspect graphs. In particular, these are as-
sumptions that are unlikely to be true for human
observers. First and foremost, the aspect graph repre-
sentation is structured around purely qualitative views
that do not capture the perceptually salient quantitative
variations in object appearance that arise from changes
in viewpoint. Empirical evidence indicates that an ex-
clusively qualitative multiple-views representation is in-
adequate for human perception (see the discussion
below). For example, humans have the ability to per-
ceive and discriminate quantitative changes (smooth
changes that do not result in qualitative differences)
and represent views differing only in quantitative fac-
tors (Perrett & Harries, 1988; Tarr & Pinker, 1989;
Tarr, 1995). Second, as mentioned previously, most
current algorithms for computing aspect graph repre-
sentations rely on the availability of 3D object models
(such as CAD models), rather than being acquired from
repeated exposure to viewpoint-specific 2D images over
time. Third, aspect graphs are generally computed at
infinite resolution and give equal weight to all pertinent
images features found in the line drawing of the object;
therefore, for even a moderately complex object there
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may be a huge number of qualitative views (Kriegman
& Ponce, 1990). Even the aspect graphs developed from
sensor models with finite resolution retain a large num-
ber of views (Shimshoni & Ponce, 1997). The potential
for a huge number of views per an object raises the
concern that, as they now stand, aspect graph represen-
tations will be too complex to be parsimoniously repre-
sented or utilized in human perception.

Thus, while aspect graphs provide an attractive
framework for understanding view-based representa-
tions in humans, it is important to acknowledge that
their actualization will be necessarily somewhat differ-
ent from the approach reviewed in the preceding sec-
tion. However, this does not automatically render
current work on aspect graphs irrelevant. Indeed, our
claim is that the image features that define visual events
may be helpful in understanding 3D object geometry
for human perception. Specifically, the image features
that define visual events in the computational theory
may be one of the factors used by humans to organize
viewpoints of objects during the acquisition of view-
based object representations. Moreover, methods for
the geometric partitioning of viewpoints of 3D objects
are necessary for interpreting patterns of viewpoint-de-
pendent behavior obtained in empirical studies of
recognition. Thus, formal descriptions of object geome-
try, including but not limited to current aspect graph
methods, offer a principled means for analyzing human
recognition performance and perceptual behavior, as
well as a model for how to manipulate viewpoint with
regard to stimulus object geometry.

4.1. Psychophysical studies

In order to assess the viability of this framework, we
present several psychophysical studies. We investigated
whether humans are indeed sensitive to the image fea-
tures used to characterize the topologically distinct
views of an aspect graph as defined in the previous
section. The essential idea of these experiments is that
as an object’s orientation changes, humans perceive
qualitative, as well as quantitative (e.g., shape), changes
in the appearance of an object. Therefore, judgments
about the orientation of an object should not be uni-
form; rather, for orientation pairs that are qualitatively
similar, discriminating between them should be
difficult, but for orientation pairs that are qualitatively
different, discrimination should be much easier. Specifi-
cally, we used the aspect graph decompositions shown
in Figs. 2 and 7 of two smoothly curved objects (Krieg-
man & Ponce, 1990), a torus and a bell, as models to
predict the orientations where participant performance
was expected to be good and where it was expected to
be poor. In judging whether two images of an object
are at the same or different orientations, participants’
accuracy was expected to be higher for orientation pairs

that span a visual event as predicted by the computa-
tional theory. In such instances we may infer that
humans are sensitive to the particular configurations of
features that define that visual event.

4.1.1. Methods

Participants: Participants were primarily drawn from
the undergraduate introductory psychology course at
Yale University (New Haven, CT) and were provided
with credit for their participation. A number of addi-
tional participants were paid 5 dollars for their time.
The number of participants for the five experiments was
24, 33, 26, 27, and 28 respectively. Participants were not
used in more than one experiment and all were naive as
to the purposes of the study.

Stimulus materials: Two solids of revolution, a torus
and a capped bell as illustrated in Fig. 6, were used as
stimuli. Both depict smoothly curved objects similar in
appearance to objects often encountered in the natural
world (in contrast to the stimulus objects used by
Shepard and Cooper (1982), Rock and Di Vita (1987),
Corballis (1988), Biilthoff and Edelman (1992) and
Tarr (1995)). Because various computer graphics tech-
niques are available for depicting object models from a
specified vantage point, it is important that the chosen
method does not bias participants’ responses. For ex-
ample, if the object is treated as being glossy, the shape
and location of specularities could provide cues about
light source location; this might aid in determining
orientation differences. Here, we have used two depic-
tion methods: line drawings and shaded images. To
render a line drawing, there is no need to introduce
light sources that could confound experimental results.
However, line drawings themselves result from applying
an ideal edge detection process; therefore, the resultant
line drawing may be somewhat different from that
produced by early visual processing in humans. Rein-
forcing this point, a recent study found that images of
objects generated from the output of edge detectors are
identified much more poorly than idealized line draw-
ings or shaded color images (Sanocki, Bowyer, Heath,
& Sarkar, 1998). Furthermore, as participants in this
experiment, observers’ edge or line detection processes
will be applied to the line drawing stimuli, and the
output that will result is likely to differ from what
would occur if an intensity image were directly ob-
served. Consequently, stimulus objects have also been
rendered as shaded images of a Lambertian surface
with a single light source in the same direction as the
viewing direction. Note that ideal line drawings of such
shaded objects (corresponding to intensity discontinu-
ities) would be identical to those produced by the first
depiction method. No additional intensity discontinu-
ities due to shadows, specular reflections, or pigmenta-
tion changes are introduced by this choice of lighting
direction and rendering model.
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Design and procedure: The participants’ task was to
judge whether two consecutively presented images of
the same smoothly curved object were displayed at the
same or at different orientations (or equivalently, ob-
served from the same or from different viewpoints). A
trial consisted of an object displayed at a ‘target’ orien-
tation for 250 ms, followed by the same object in a
‘probe’ orientation for 250 ms; both the target and the
probe were masked by a gray field displayed for 100
ms.” Changes in viewpoint were produced by a depth
rotation around a horizontal axis parallel to the image
plane where the major axes of the object were initially
aligned with the gravitational and screen defined major
axes. Participants responded by pressing one of two
keys: the ‘S’ key for same responses and the ‘D’ key for
different responses; participants were given feedback in
the form of a beep when their response was incorrect.
Participants’ viewing positions were fixed approxi-
mately 54 cm from the screen by the use of a chin rest:
this resulted in the upright viewpoint of the torus and
the bell, respectively, subtending 7.95° x 7.95° and
9.53° x 9.53° regions of visual angle.

In a given experiment, the same object was used
throughout 720 randomly order trials. The object ap-
peared 20 times each at the 36 target orientations
defined by rotations from 0° to 180° in 5° increments
(where 0° is the upright position). Experiment 2, which
used the shaded torus as the stimulus object, differed in
that it included 5° increments starting from 2.5° rather
than 0° to ensure that no single image fell directly on a
visual event). For each target orientation, the orienta-
tion difference from probe to target was either 0°, 5°,
10°, or 15°, with the proportion of trials for each
difference being 40%, 20%, 20%, and 20%, respectively.
In addition, differences of 5°, 10°, and 15° were split
evenly between forwards and backwards rotations. Ex-
perimental sessions were divided into two identical 360
trial blocks to allow participants some respite. Each
block was preceded by four practice trials that were not
included in any of the analyses.

Five distinct experiments were run. Experiments 1
and 2 used the torus as the stimulus object, while
Experiments 3—5 used the bell as the stimulus object.
Experiments 1 and 3 used objects rendered with only
occluding contours and edges, while Experiments 2, 4,

7 The interval between the target and the probe was 100 ms (during
which the first mask was presented). This interval is within the range
found by Ellis and Allport (1986) to result in reliable effects of object
viewpoint on performance. In contrast, Ellis and Ailport found that
longer intervals, e.g., greater than 750 ms, reduced the effect of
viewpoint on recognition performance. The shorter interval was
employed because we were specifically interested in how different
changes in viewpoint influence object memory. Of course, the shorter
interstimulus interval opens up the possibility that participants are
responding based on local image features, an explanation ruled out
by the results of Experiment 5.

and 5 used objects rendered with smooth shading.
Other than the variation in the particular object used,
Experiments 1-4 were identical in that the position of
the object on the screen remained fixed, while Experi-
ment 5 added a random position shift from the target
to the probe of between — 50 and + 50 pixels in both
the horizontal and vertical directions. This manipula-
tion was introduced to ensure that participants did not
simply fixate on a local region of the screen that they
believed to be diagnostic for performing the orientation
discrimination.

4.1.2. Results and discussion

Performance was assessed by measuring participants’
accuracy in detecting an orientation difference between
the two images. If a participant failed to respond within
7500 ms the trial was considered incorrect. Orientation
sensitivity functions were computed separately for
target—probe separations of 5°, 10°, and 15°® in each
instance, data from forwards and backwards rotations
were combined according to the midpoint of the probe
and target orientations. For example, view orientation
pairs of 15°/20° and 20°/15° (both 5° target—probe
separations) are included in the mean for 17.5°. Orien-
tation sensitivity functions for 10° and 15° target—
probe separations were uniformly at ceiling with almost
perfect performance at all orientations®. Therefore, the
following analyses focus only on 5° separations.

General results: Figs. 8 and 9 illustrate participants’
mean percent correct in discriminating views of given
stimulus object. In each instance, measured accuracy
reflects participants’ ability to discriminate two views of
the object separated by 5° of rotation in depth. Each
data point represents an orientation region +2.5°
around the specified midpoint. For instance, the value

8 Trials where the probe and target were identical were not pre-
dicted to yield meaningful patterns of responses due to the absence of
any changes in visible features between the two images. This was
found to be the case at all viewpoints participants’ accuracy was
generally higher than that found for different trials, ranging between
60% and 95%.

° That participants were at ceiling at the larger angular separations
does not restrict the generality of qualitative changes to only small
rotations. Experiments often manipulate stimulus presentation
through duration, degradation or masking to ‘probe’ the normally
opaque processing of the stimulus. Specifically, ceiling effects do not
reduce the importance of qualitative changes. In assessing how views
are delineated, quantitative changes, such as those resulting in the
at-ceiling performance, do not provide any decomposition of the view
sphere into unique views. In contrast, qualitative changes, regardless
of angular separation, will group some regions of the view sphere as
similar and others as dissimilar. If perception relied on quantitative
information, there would be no principled method for determining
when a change was dramatic enough to warrant a new view or trivial
enough to be considered a familiar view. Thus, every slight quantita-
tive change (e.g., every change in viewpoint) would lead to a new
unique view; clearly an unparsimonious model.
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Fig. 8. Mean percent correct in discriminating views of a torus.
Measured accuracy of participants’ ability to discriminate two views
of a torus separated by 5° of rotation in depth. Each data point
represents an orientation region + 2.5° around the specified midpoint.
For instance, the value at 87.5° denotes accuracy for differentiating the
torus when displayed as the target—probe pairs 85°/90° and 90°/85°.
Locations of the visual events predicted by the formal theory are
marked by the vertical gray lines. (a) Experiment 1. Percent correct for
discriminating views of a line drawing of the torus. (b) Experiment 2.
Percent correct for discriminating views of the shaded torus.

at 87.5° denotes mean percent correct for differentiating
an object when displayed as the target—probe pairs
85°/90° and 90°/85°. The interpretation of such data is
relatively straightforward: the higher accuracy score,
the better the participants were at discriminating the
two orientations defining the midpoint indicating that
they are more sensitive to the changes in image features
between these orientations.

Locations of the visual events predicted by the for-
mal theory are marked by the vertical gray lines accord-
ing to the stimulus object used in each experiment. The
crucial characteristic of each function is the prominent
maxima; that is, the orientations where participants’
accuracy is greatest relative to not only the surrounding
orientations, but to the overall mean accuracy across all
orientations. When one compares these maxima to the
predicted accidental viewpoints (the orientations where
the aspect graph makes the transition from one view to
another), accuracy in discriminating orientations does
increase when images cross a visual event. Note that
because we made no predictions about the pattern of
responses for orientations within a single view, we can-
not apply inferential statistics to the analysis of these
data. Suffice it to say, that, in general, when maxima do
occur, they do so at orientations predicted by the
formal theory. We now turn to the discussion of the
results from individual experiments.

Experiment 1: As illustrated in Fig. 8(a), there is a
systematic change in performance with changes in the
orientation of the torus. Specifically, at all five of the
visual events (actually three different types of transi-
tions due to symmetry) participants’ percent correct in
detecting the orientation difference is highest at target—
probe pairs that span visual events occurring at 45°,
60°, 90°, 120°, and 135°. At first pass, these results
suggest that observers are sensitive to particular classes
of transitions in image features within objects rendered
with edges and occluding contours.

A second issue concerns the pattern of responses at
orientations between visual events. Here, we observe a
systematic increase in performance as the orientation
pair approaches a visual event. The visual events
present for the torus all correspond to transitions in the
configurations of images features located near the left
and right edges of its inner rim. However, other
changes, albeit non-qualitative, occur in the surround-
ing silhouette, both in terms of its shape and the total
area it defines. Similar non-qualitative changes occur in
the inner rim. Such changes are not restricted to visual
events, but rather are distributed throughout all orien-
tations, with more dramatic changes coincidentally oc-
curring at orientations approaching visual events (e.g.,
a 5° rotation while the torus is viewed near on-end will
produce a greater change in area than will a 5° rotation
when the torus is viewed from the side). Therefore, it is
probable that participants are able to use these relative
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Fig. 9. Mean percent correct in discriminating views of a bell. Measured accuracy of participants’ ability to discriminate two views of a bell
separated by 5° of rotation in depth. Each data point represents an orientation region =+ 2.5° around the specified midpoint. Locations of the
visual events predicted by the formal theory are marked by the vertical gray lines. (a) Experiment 3. Percent correct for discriminating views of
a line drawing of the bell. (b) Experiment 4. Percent correct for discriminating views of the shaded bell. (c) Experiment 5. Percent correct for
discriminating views of the shaded bell with a shift in position (a random + 50 pixel shift in both the horizontal and vertical directions the
resolution of the monitor was 72 pixels per inch, resulting in shifts of approximately 2.5° of visual angle in each direction).

changes in shape and area to enhance their estimates of
orientation, thereby exhibiting differential performance
for within-view orientations. While not entirely surpris-
ing, this result is at odds with models in which partici-
pants are judging orientation based solely on qualitative
image structure (which would predict uniformly poor

performance at such orientations). Consequently, per-
formance theories of how humans encode viewpoint-de-
pendent information in object representations should
ultimately include parameters beyond those needed for
computing aspects (for instance, see Perrett and Harries
(1988)).
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Experiment 2: As illustrated in Fig. 8(b), a similar
pattern may be observed for the smoothly shaded torus.
Again, performance is highest at target—probe pairs
that span the visual events predicted by the computa-
tional theory. However, in contrast to the results of
Experiment 1, maxima are observed at only three mid-
points, the visual events at 60°, 90°, and 120°. Appar-
ently, in shaded images, the swallowtail transitions
(from a smooth curve to a t-junction and a cusp)
located at 45° and 135° are not sufficiently salient to
produce qualitative differences among orientations. In-
deed, while accuracy at these two orientations is higher
than at preceding or subsequent orientations, it is only
by virtue of the overall trend towards better perfor-
mance as orientation approaches salient visual events.
This finding indicates some of the limits on the types of
image features and transitions that play a role in hu-
man object perception. Moreover, the results of this
experiment are significant in that not only do they
confirm some of the results obtained for line drawings
of the same stimulus object, but they do so using
smoothly shaded images that are similar in appearance
to objects found in the ‘real-world,” e.g. rendered in a
manner that does not introduce biases about the
saliency of particular features. While a perfect edge
detection process would produce the line drawings used
in Experiment 1, the human visual system computes
edges using receptive fields; therefore, the shaded im-
ages used in Experiment 2 will not yield edge maps
identical to the ‘ideal’ case. Taken together with the
results of Experiment 1, these findings confirm that
humans are sensitive to some of the features used in
one approach for defining aspects.

Experiments 3—5: As illustrated in Fig. 9, the use of
a complex piecewise smooth object, in this instance the
capped bell, yields a somewhat more complex pattern
of responses than that obtained in Experiments 1 and 2.
Specifically, as shown in Fig. 9(a) prominent maxima
are only observed at four of the predicted visual events:
28.8°, 90°, 151.2°, and 174.3°, although crucially, as in
the previous experiments, when maxima are found, they
occur at computationally predicted orientations and
never at orientations for which no prediction of im-
proved performance was made. On the other hand, at
the other three visual events, located at 72.2°, 107.8°,
and 117.8°, relatively low accuracy is actually found.
Remarkably similar patterns are found in Experiments
4 and 5, adding, respectively, smoothly shaded images
(Fig. 9(b)) and random shifts in the relative positions of
the target and probe (Fig. 9(c)). Thus, we can generally
conclude that participants are sensitive to the changes
found at certain visual events and insensitive to the
changes found at others regardless of the rendering
technique used for display. Additionally, the similarity
of the results of Experiment 5 to Experiments 3 and 4
indicates that participants are processing the intrinsic

relationship of image features, rather than simply fo-
cusing on a fixed region of the display that is diagnostic
for the task.

In light of these results, one intriguing question is
why participants were completely insensitive to certain
visual events. First, let us examine the exact nature of
the three ‘ignored’ visual events. At 72.2° there is a
transition from a pair of features (a t-junction and
cusp) to a 3-tangent junction (Fig. 10); at 107.8° there
is a transition from a curvature l-junction to a t-junc-
tion and cusp; and, at 117.8° there is a transition as a
limb (the backside of the bell) becomes disoccluded
(Fig. 11).

Why might observers ignore these particular events?
First, particularly for the event at 72.2° (Fig. 10), the
changes in the configurations of image features are
quite subtle. Of course, this inference is tautological in
that such transitions most likely seem subtle to us and
to our participants for exactly the same reasons. There-
fore, while experimental results confirm our intuition, it
could not have been predicted by the present computa-
tional theory.

Second, particularly for the events at 107.8° and
117.8° (Fig. 11), changes occur only gradually over
shifts in orientation. This can be seen in the leftmost
and rightmost images in Fig. 11, where over a wider
range of orientations, the transitions in both configura-
tions of features are clearly visible and quite salient.
This is consistent with the hypothesis that features at
some scales are ignored, thereby significantly reducing
the complexity of many perceptual processes and, cru-
cially, the number of aspects per an object. This claim
is at odds with most computational derivations of
aspect graphs, except (Eggert et al., 1993; Shimshoni &
Ponce, 1997), since they ignore scale. This assumption,
however, results in a huge number of views — one

70° 75°

Fig. 10. Views of a bell on either side of visual event at 72.2°. Within
the boxed region of the left view, a ¢-junction is formed by the upper
contour joining the smooth lower contour at a non-zero intersection
angle; in the right view the intersection is tangential and forms a
three-tangent junction. This illustrates an example of a visual event
predicted by the computational theory, but where psychophysical
results indicate that observers are not sensitive to the particular
configuration of image features. Such findings may be useful in
developing parsimonious object representations and practical applica-
tions using aspect graphs.
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Limb becoming

curvature unoccluded
L-junction /
t-junction
& cusp

-

Fig. 11. Views of a bell across visual events at 107.8° and 117.8°.
Within the boxed region in the lower right of the left view, a curvature
I-junction is formed by a tangential intersection between two con-
tours, in the center view the two join at a non-zero intersection angle,
producing a ¢-junction and cusp; the boxed region near the top of the
center view also illustrates an occluded limb (the backside of the bell),
in the right view this limb has become disoccluded. While current
psychophysical results indicate that observers are not sensitive to
these visual events, there may be conditions under which they become
more salient; for instance, by varying their relative scale relative to
the overall image. Such findings may be useful in developing finite-
scale aspect graphs, as well as understanding how humans encode
features within object representations.

ubiquitous criticism of the aspect graph approach.
Moreover, if aspect graph-like structures are to be
used by active observers that acquire information
over finite amounts of time, e.g., humans, then the
number of potentially different views per an object
must be reduced (such objectives are also attractive
for reasons of general parsimony). Therefore, a better
understanding of the mechanisms by which humans
encode viewpoint-dependent information, in particular
in terms of partitioning the aspects of objects, will
hopefully aide in the development of finite-scale as-
pect graph construction algorithms, as well as place
constraints on the features within an image that are
considered relevant or salient to a particular percep-
tual task.

5. General discussion

We began this article by presenting evidence that
human object recognition is mediated at least in part
by view-based mechanisms and representations. This
claim is supported by a growing body of psychophys-
ical (Bilthoff & Edelman, 1992; Biederman & Ger-
hardstein, 1993; Tarr, 1995; Hayward & Tarr, 1997,
Tarr, Williams, Hayward, & Gauthier, 1998) and neu-
roscientific (Warrington & Taylor, 1973; Layman &
Greene, 1988; Perrett et al., 1989; Plaut & Farah,
1990; Logothetis & Pauls, 1995) results indicating that
humans and other primates mentally represent 3D

objects as sets of views, each view corresponding to a
more or less limited range of adjacent viewpoints.
While this approach may offer some computational
advantages over the more standard 3D reconstruction
approach (Marr & Nishihara, 1978), it also intro-
duces a host of new computational issues, the most
salient of which is defining what constitutes a ‘view.’

One approach to the question of ‘What defines a
view?" is primarily empirical. It is well established
that humans are sensitive to the frequency of occur-
rence of a given object in a given orientation (Tarr &
Pinker, 1989; Tarr, 1995) and to visually-similar ob-
jects in a given orientation (Jolicoeur & Milliken,
1989; Moses et al., 1996; Gauthier & Tarr, 1997b;
Tarr & Gauthier, 1998). Building on such findings,
several groups have investigated how experience
shapes both the acquisition and representation of ob-
ject views. For example, Perrett and colleagues (Per-
rett & Harries, 1988; Perrett, Harries, & Looker,
1992) used an ‘inspection’ methodology to examine
how observers distribute their time across different
viewpoints when learning about new, never-before-
seen objects. In one study they attempted to charac-
terize inspection time distributions for relatively
simple faceted and smooth objects (‘tetrahedra’ and
‘potatoes’) in terms of the image properties of the
preferred views. For the faceted objects, the preferred
views typically showed a vertically symmetric image
centered on an edge or object face; for smooth ob-
jects, the preferred views had the major axis of each
object aligned or perpendicular with the observers’
line-of-sight. Interestingly, in both stimulus conditions
the views preferentially inspected by observers did not
correspond to aspects as defined by the aspect graph
approach. This result was reinforced in a second in-
spection study using a ‘machined tool part’ (which
unlike the previous study, was composed of multiple
distinct parts). Perrett (Perrett et al.,, 1992) again
found that preferred views were determined more by
alignment with the line-of-sight and gravitational
axes, than by the intrinsic topology of the object
(similar results using familiar common objects are re-
ported by Blanz, Tarr, and Biilthoff (1999)). Al-
though these results appear inconsistent with our
present results, it is difficult to compare findings be-
tween different methodologies. Inspection times dur-
ing the acquisition of novel objects may require
different information than that used to discriminate
between views. In particular, when learning about a
new object, observers may select the most informa-
tive, readily comprehended views, not those that are
most stable or specifically distinct from other views.
However, the mechanisms whereby one learns about a
3D object are not necessarily the same as the mecha-
nisms used to organize its representation or perceive
its 3D structure.
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Supporting this interpretation, several studies by
Todd, Koenderink and colleagues indicate that topo-
logical features of objects play an important role in
object perception and memory. For example, Norman
and Todd (1994) and Norman, Todd, and Phillips
(1995) found that observers were better able to perceive
the rigid 3D structure of moving objects when its
deforming occlusion contours rotate through multiple
aspects. In contrast, when only a single aspect is shown,
the objects appear non-rigid as they rotate in depth.
Phillips, Todd, Koenderink, and Kappers (1997) had
observers identify corresponding points on a single
object viewed from more than one orientation. They
suggest that the localization of points on smoothly
curved surfaces relies on the availability of stable fea-
tures, such as the minima and maxima of curvature.
Finally, in a match-to-sample task Todd, Chen, and
Norman (1998) found that observers performed most
accurately and responded most quickly when objects
could be discriminated based on topological differences
as opposed to affine or euclidean differences. Thus,
there is some evidence that mechanisms of object per-
ception and recognition are sensitive to topological
surface features. Our results reinforce this point and
test the importance of two specific classes of features as
defined by a formal theory of object geometry. We
believe that this approach offers a principled basis for
understanding human performance.

To begin address this complex issue, we have reduced
the question of ‘What defines a view?” to the simpler
question of whether observers are sensitive to the kinds
of viewpoint-dependent image features used to delin-
eate views in a specific version of aspect graphs. Results
from experiments using two smoothly curved objects
indicate that for certain types of features human per-
ceivers are better able to perform orientation judgments
when the viewpoint crosses a visual event as compared
to when the viewpoint does not cross a visual event (as
defined by the theory). It is, however, important to
emphasize that any positive results in this regard do not
imply that observers are employing or constructing
aspect graphs in the manner proposed by Koenderink
or implemented by Kriegman and Ponce. Indeed, as
discussed earlier, the conditions under which we nor-
mally learn about objects, disparate views over space
and time, will necessarily render human object repre-
sentations somewhat different from those commonly
used in computer vision (but see Seibert & Waxman
(1990, 1992)). Consequently, the fact that we find that
observers are sensitive to some viewpoint-dependent
image features suggests only that these features are
available as candidates for structuring more complex
representations. Given the central role that the field has
ascribed to such higher-level object representations, we
will now consider some of the possibilities in this
regard.

5.1. The role of viewpoint-dependent features in visual
cognition

Theories of visual cognition, including both mental
imagery and object recognition, are predicated on the
assumption that we encode object representations in a
visio-spatial format. Furthermore, the organization of
such representations is not arbitrary, but rather is hi-
erarchical in that it captures both our exemplar-specific
and our categorical knowledge about objects. Hence,
an essential component of the recognition process is
that we are able to identify both the particular instance
of an object and its various category memberships, e.g.,
knowing that an object is a 1965 Mustang Convertible,
a Ford, a sports car, and a car; all presumably accom-
plished through matches between descriptions of the
input shape and stored object representations. Current
thinking (Jolicoeur, 1990; Tarr & Pinker, 1990; Farah,
1992; Hummel & Stankiewicz, 1996b) suggests that
there are at least two variants for object representa-
tions: one that is ‘image-based,” strongly configural (in
that many of these models assume that the specific
locations of every feature are known) and highly spe-
cific to particular viewpoints (Edelman, 1995; Tarr &
Biilthoff, 1995; Riesenhuber & Poggio, 1999), and one
that consists of features encoded in a hierarchical man-
ner that is stable over a range of adjacent viewpoints
(Marr & Nishihara, 1978; Biederman & Gerhardstein,
1993; Hummel & Stankiewicz, 1996a). Whether a given
object representation falls more towards one end of this
spectrum or the other may be a product of an observ-
er’s experience with the objects in question (Gauthier &
Tarr, 1997a; Gauthier, Williams, Tarr, & Tanaka, 1998;
Tarr & Bilthoff, 1998). Thus, it is less a question of
whether a particular object representation depicts a
specific exemplar (e.g., ‘1965 Mustang’) or a larger class
(e.g., ‘cars’) and more how IT-cortex has been fine-
tuned by experience to form representations suited for
the recognition task most commonly performed by an
individual observer (Gauthier, Tarr, Anderson, Skud-
larski, & Gore, 1999). Our speculation is that regardless
of whether one is discriminating between members from
within a class (Biilthoff & Edelman, 1992; Humphrey &
Khan, 1992; Tarr, 1995) or making more categorical
judgments (Biederman, 1987, Hummel & Stankiewicz,
1996b), the critical object representations are comprised
of viewpoint-dependent features similar to those that
we have begun to explore through computational and
psychophysical methods.

View-based representations: Theories of specifically
view-based representations in human vision share many
overt similarities with computational models of aspect
graphs. However, there are also important differences;
perhaps the most fundamental being that humans both
perceive and represent quantitative as well as qualita-
tive differences among viewpoints. Thus, it is not sur-



M.J. Tarr, D.J. Kriegman / Vision Research 41 (2001) 19812004 1999

prising that view-based representations in humans are

sensitive to the statistics of viewpoint (e.g., how often

an object is observed in a given viewpoint) and often
appear to encode views that do not differ qualitatively

(e.g., orientations differing only by a picture-plane rota-

tion).!° In contrast, an aspect graph representation does

not differentiate between such views.

Finally, although the present results do not allow us
to directly specify a performance model of biological
object recognition, we can speculate on how the geo-
metrical structure captured by aspect graphs might be
exploited. One possibility is that insofar as multiple-
views representations are sensitive to object geometry,
there is a need to delineate boundaries between qualita-
tively different views. Except for entirely novel objects,
a recognizer is likely to encounter two distinct situa-
tions: familiar objects in familiar views; and, familiar
objects in unfamiliar views. Recognition might then
proceed as follows:

1. Configurations of viewpoint-dependent features are
located within the input image.

2. In parallel with the location of viewpoint-dependent
features, a coarser viewpoint-independent feature-
based description is extracted that provides informa-
tion about category membership and limited
information about 3D structure that may facilitate
interaction with the object (Biederman, 1987; Ull-
man, 1989).

3. One or more configurations of features are used as
index points, that is, configurations from the input
image are compared to configurations encoded in
the model base of known objects (Clemens & Ja-
cobs, 1991).

4. The coarse viewpoint-independent description may
be used to constrain the search of the model base
for viewpoint-dependent feature indexing.

Effectively, what this sequence of events implies is
that coarse information about an object, possibly corre-
sponding to basic-level category, will facilitate more
specific recognition. In particular, this specificity is
achieved by comparing viewpoint-dependent image fea-

19 Picture-plane rotations may also produce different qualitative
descriptions of objects (for instance, as suggested in Hummel &
Biederman, 1992). However, such qualitative changes are extrinsic in
that they are determined entirely by the perceiver (encompassing both
the selected viewpoint and a partitioning of the picture-plane based
on statistical regularities in the world, i.e., the object’s orientation
relative to gravity or functional role). In contrast, the qualitative
changes we have examined are intrinsic to the object (although a
given viewpoint is still extrinsic in being determined by the observer).
It is possible that qualitative views, particularly for rotations in the
picture-plane, are sometimes defined by purely extrinsic factors (for
instance, there is some evidence that arboreal monkeys have cells
sensitive to upright monkey faces and other cells sensitive to upside
down monkey faces, Perrett, Mistlin, & Chitty, 1987), but that
intrinsic factors will predominate or at the least play a significant role
in defining qualitative views over rotations in depth.

tures to similar features encoded in object memory.
Once a correspondence has been established between
features in the input and the features in a familiar view,
a transformation will be available that may be executed
in order to establish a precise match (for instance, see
Ullman (1989)). In contrast, for unfamiliar views of
objects where the category is extremely certain (e.g.,
many known exemplars sharing parts with the familiar
object), this search will provide a transformation that
will yield only an approximate match. That is, the
object may still be recognized at both a categorical and
at a specific level, but in the latter case, only to the
degree that the input image corresponds to familiar
views of familiar objects. Finally, for unfamiliar views
where the category is less certain, this search will fail to
provide a transformation that is likely to yield a good
match. Thus, recognition will fail at both levels: coarse-
level information being indeterminate and object-spe-
cific identification being unattainable.

Each of these three cases also has consequences for
whether a new view is encoded: in the first instance, no
new view should be instantiated because, while a trans-
formation may have been necessary, there were no
qualitative differences between the viewpoint-dependent
features of the known view and the perceived view; in
the second instance, a new view should be instantiated
because of the qualitative differences between the view-
point-dependent features of the known views for that
object and the perceived view; and, in the third in-
stance, a new view should be instantiated, but without
reference to other pre-existing views, because there is
insufficient information to relate this view to known
views of objects. Finally, these three situations loosely
correspond to psychophysical results: first, mental
transformations/normalizations are used to align ob-
jects in unfamiliar views with familiar views (Tarr &
Pinker, 1989; Biilthoff & Edelman, 1992; Edelman &
Biilthoff, 1992; Tarr, 1995); second, views are instanti-
ated according to the visual similarity between an ob-
ject and other members of a category (Jolicoeur &
Milliken, 1989; Moses et al., 1996; Gauthier & Tarr,
1997b; Tarr & Gauthier, 1998); and, third, completely
novel views are sometimes treated as entirely new ob-
jects (Rock & Di Vita, 1987). Note that nowhere within
this hypothetical mechanism is an aspect graph com-
puted per se, rather, the graph structure or multiple-
views representation is developed in part according to
the qualitative differences, or lack thereof, found
among views of objects over experience.

Structural-descriptions: Viewpoint-dependent features
may be utilized in mechanisms other than view-based
recognition. Consider that many structural-description
models for object recognition include recovery mecha-
nisms for extracting 3D volumetric primitives from
input shapes (Marr & Nishihara, 1978; Biederman,
1987). Typically, such theories attempt to find invari-
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ants that will support the recovery of an identical 3D
description from all viewpoints of an object (disregard-
ing foreshortened or otherwise catastrophic views). Un-
fortunately, such putative invariants have not shown
themselves to be very robust when applied to the range
of images likely to be encountered in the ‘real world.’
Moreover, even less complex contexts may present
problems. For example, Biederman (1987) initially sug-
gested that clusters of non-accidental properties could
be used to recover ‘geons’ (a variant of generalized
cylinders) independently of orientation; this hypothesis
has since been modified to suggest that particular clus-
ters of non-accidental properties are invariant only up
to occlusion (Hummel & Biederman, 1992; Biederman
& Gerhardstein, 1993). However, recent formal analy-
ses have even rendered this claim suspect-non-acciden-
tal properties may not be general enough to support
generic recognition (Jacobs, 1992) and empirical results
indicate that even single volumes are recognized
through viewpoint-dependent processes (Hayward &
Tarr, 1997; Tarr et al., 1998).

An alternative approach to recovering volumetric
primitives has been proposed by Dickinson, Pentland,
and Rosenfeld (Dickinson, Pentland, & Rosenfeld,
1992). Interestingly, their approach combines elements
of aspect graph representations with part-based descrip-
tions. They suggest that given a restricted part vocabu-
lary (an attractive proposition for psychological
models, see Biederman, 1987), the aspect graphs for the
complete set of primitives may be stored. A 3D part
description may then be recovered by matching these
pre-computed part aspects to viewpoint-dependent fea-
tures of segmented parts found within input shapes.
Thus, an aspect graph representation is used to capture
the geometry of parts of objects rather than complete
objects. In this manner, view-based mechanisms are
used to arrive at a structural-description. This sidesteps
some of the problems raised by the aspect graph theory;
the number of views per an object and the complexity
of the graph structure. Here, the number of aspects is
relatively small — primarily because the number of
views is independent of object complexity, and in part
(sic), because of the simplicity of the primitives chosen
for the representation.

Two points about this approach should be noted.
First, the fact that this approach utilizes view-based
features suggests that structural-descriptions are not
derived in a serial fashion prior to image-based match-
ing. Rather, it may be that both elements of the repre-
sentation are computed concurrently with a degree of
interaction; thus, partial information about category
may constrain more specific indexing, while partial
information about image-based matches may constrain
the recovery of more complex descriptors of the object
(e.g., configurations of features or parts). Second, this
method is quite similar to earlier structural-description

approaches in that it relies on a restricted set of primi-
tives (in order to limit the number of aspects) and on
using viewpoint-dependent features for recovering such
primitives. In particular, because the features currently
hypothesized for geon recovery may not prove robust
in the more general case, it may be worthwhile to
consider alternative classes of image features; signifi-
cantly, because of both their generality and empirically
validated salience, we suggest that the features used in
aspect graphs are good candidates.

5.2. Other viewpoint-dependent factors

While the results of our experiments indicate that
observers are sensitive to some of the viewpoint-depen-
dent features used in computing aspect graphs, there
are both limitations to this claim and additional view-
point-dependent factors almost certainly enter into the
definition of aspects. First, the difference in perfor-
mance between the line drawings and shaded images
raises a number of issues about the saliency of certain
configurations of features under ‘normal’ viewing con-
ditions (a point also relevant to the recovery of geons
from ‘non-accidental’ properties). Most notably, ob-
servers were not as adept at distinguishing orientation
changes across the swallowtail transitions (the events at
45° and 135°) of the shaded version of the torus as
compared to the line drawing version (Fig. 6).
Difficulty in perceiving this change for shaded drawings
may be related to the accuracy of locating (or even
detecting) cusps in images. In particular, the response
of an edge detection filter diminishes in the neighbor-
hood of a cusp: because an edge terminates at a cusp
and a receptive field has non-zero area, the edge will
cross only one-half of the receptive field when it is
centered at the cusp point. In the case of a swallowtail
transition, a cusp and a t-junction are introduced; near
the accidental viewpoint, the cusp will be quite close to
the junction and, consequently, will be very difficult to
detect given the limitations of human edge detectors. In
light of this fact, it is not at all surprising that observers
did not consistently discriminate between the two views
in the neighborhood of the swallowtail.

Similarly, in the case of the bell, observers were
poorer at discriminating between the views across the
visual event occurring at 151.2° in the shaded image
versus the line drawing. Compare Fig. 9(a) and (b). In
this visual event, a cusp and a t-junction merge into a
smooth contour; illustrated in the first transition of Fig.
11. Again, difficulty in discerning cusps may account
for the relatively poorer performance.

Here, we see limitations of the assumptions used to
define the aspect graph as described earlier. Recall that
the second of the three issues that needed to be ad-
dressed was ‘What constitutes a qualitative description
of a view? In this discussion, as in nearly all work
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concerning aspect graphs, views were defined by the
features to be found in perfect line drawings. However,
as with many competence models, this does not con-
sider the limitations of the actual perceptual system,
e.g., performance, in this instance the edge detection
process, and in particular, the fact that receptive fields
have non-zero area. To account for this effect, a plausi-
ble performance theory encompassing aspect graphs
will require significant modifications; beyond even those
proposed in recent articles that include degenerate
views (Kender & Freudenstein, 1987) and finite resolu-
tion aspect graphs (Eggert et al., 1993; Shimshoni &
Ponce, 1997).

A second limitation of the current framework con-
cerns the purely qualitative definition of a view. As
such, no distinction is made between viewpoints that
are within a single region, but result in significant
quantitative changes in the image of the object. As
discussed, there is some evidence within our data that
observers are sensitive to certain quantitative changes
and may utilize them in delineating among viewpoints.
In particular, observers may be sensitive to the shape of
the silhouette and the total area it encompasses (Hay-
ward & Tarr, 1997). Supporting this interpretation,
there are several studies that have also explored the
factors that determine aspects of objects in human
perception and come to similar conclusions.

First, Perrett and Harries (1988) recorded how par-
ticipants distribute their time while freely inspecting
objects rotated around a vertical axis. Using both tetra-
hedra and smooth objects (potatoes), they found that
participants were more likely to spend greater amounts
of time studying both the maximum and minimum
horizontal width of the silhouette (the viewpoints where
a principle axis of the object was either parallel to the
image plane or maximally foreshortened). This result is
consistent with our finding that within certain qualita-
tive regions, our observers’ ability to discriminate be-
tween viewpoints increases with changes in the
silhouette of the object. However, Perrett and Harries’
experiments also revealed large individual differences
among participants in terms of which viewpoints were
preferred; a finding that suggests that simple explo-
ration experiments may not adequately capture the
underlying mechanisms used to define and instantiate
view-based representations. Indeed, an exploration
paradigm is subject to both individual preferences and
specific experiences with different views of objects. Dif-
ferent views of the same object may be selected as the
‘best’ depending on subtle differences in how the task is
described (Blanz et al., 1999). A second study by Har-
ries, Perrett, and Lavender (1991) supports this conjec-
ture. Using 3D heads as stimuli, they found that
differential inspection times across viewpoints did not
predict differences in recognition performance or mem-
ory. On closer inspection, these findings may still be

compatible with a multiple-views explanation; it is pos-
sible that participants learn prototypical views of heads
(as reflected in the distribution of inspection times and
through prior experience with heads as a class), but that
such prototypical views essentially ‘cover’ the entire
view space such that unencoded intermediate views
activate responses in two more adjacent prototypical
views (as reflected in equivalent or even better recogni-
tion performance at intermediate views; Tarr & Pinker,
1989; Biilthoff & Edelman, 1992). Interestingly, this
interpretation is consistent with computational ap-
proaches in which unfamiliar views are recognized by a
linear combination (Ullman & Basri, 1991) or of an
interpolation (Poggio & Edelman, 1990) between two
nearby views.

Second, Langdon, Mayhew, and Frisby (1991) had
participants rate the difference between an object ap-
pearing in a reference view and in views generated by
varying degrees of rotation around a variety of different
axes. A simple measure of feature difference was used
to assess whether object geometry played a role in
determining ratings. This measure was compiled by
comparing the cumulative number of faces, edges, and
vertices in the reference view to the features in the rated
view. Note that while this measure does correlate some-
what with qualitative changes in the view space, it is
imperfect in that some qualitative differences will be
missed. Results from this study were consistent with the
hypothesis that observers are sensitive to both quantita-
tive and qualitative changes in view. On the one hand,
difference ratings generally increased with greater angu-
lar separation between orientations, suggesting that
quantitative changes help determine the perceived view-
point of an object; on the other hand, discontinuities in
the ratings occurred at viewpoints that often corre-
sponded to large transitions in the measured feature
differences, suggesting that qualitative changes also
played a part in determining the perceived viewpoint.
Thus, there is at least limited evidence for somewhat
richer view-based representations in humans than as
specified by aspect graph theory.

5.3. Conclusions

To summarize the ideas we have presented here, we
wish to emphasize the following points.

View-based representations seem to underlie many of
the mechanisms used by humans to visually recognize
objects. In particular, such representations are particu-
larly engaged when discriminating between visually-
similar objects (Tarr & Pinker, 1989, 1990; Biilthoff &
Edelman, 1992; Edelman & Biilthoff, 1992; Humphrey
& Khan, 1992; Tarr, 1995).

Factors that influence the acquisition of view-based
representations include familiarity with a given view of
an object, similarity of a given view of an object to
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known views of visually-similar objects, and the way in
which the geometry of an object varies with viewpoint
(Gauthier & Tarr, 1997b; Tarr & Gauthier, 1998).
These factors reflect the fact that humans are most
likely sensitive to both quantitative and qualitative
differences in views.

The way in which image geometry varies with view-
point may be captured by an aspect graph representa-
tion providing a complete decomposition of an object
into its aspects. Such views are delineated by a small
class of qualitative changes that occur in configurations
of image features for changes in viewpoint (Koenderink
& Van Doorn, 1979; Koenderink, 1990; Kriegman &
Ponce, 1990).

Human perceivers are sensitive to several of the
viewpoint-dependent features used to construct aspect
graphs. While it is unlikely that observers ‘construct’
aspect graphs, it is possible that such features provide
the underpinnings of mechanisms that determine what
constitutes a unique view of an object in view-based
representations. Furthermore, it is also possible that the
same features may provide the basis for other aspects of
object representation; for instance, the robust recovery
of parts.
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